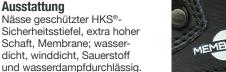


DELTA 1 NTP DRY

DIN EN 20345 \$3 SRC

- ✓ Perfekte Passform
- Wasserdichte Membrane ESD-Ausstattung
- ✓ DGUV 112-191 Anpassung
- POWERGRIP, PU/PU Sohle

SPEZIFIKATIONEN



Hersteller	HKS®-Sicherheitsschuhe
Artikel/ ArtNr.	DELTA 1 NTP DRY / 805148
EN-Normen	EN ISO 20345 SRC \$3
Schuhform	Herren Sicherheitshalbstiefel, extra hoher Schaft!, Fagus® Mehrweiten-Leisten: Schuhweite N 11+
Größenbereiche	39 - 48
Obermaterial	Leder
Gewicht	560g bei Größe 42
Innenfutter	Membrane, wasserdicht, winddicht, sauerstoff- und wasserdampfdurchlässig
Fußbett	Serienmäßig eingebaute HKS® ESD FIT FOR WORK Fußbetten (optional DGUV 112-191)
Zwischensohle	Ausgezeichnete Dämpfungswirkung, Reduktion der Aufprall und Druckkräfte
Sohle	BOLD® Blue PU/PU Komfort Laufsohle in Dark Blue mit genialen Outdoor und Indoor Eigenschaften
Nageldurchtrittschutz	T-Laminate
Lasche	Leder
Zehenschutzkappe	Composite / 200 Joule geprüft
ESD-Ausstattung	Ja
Bold Red-ID Äußere Kennzeichnung für	Ausstattung Nässe geschützter HKS®-

eingebauten T-Laminate

Elektrostatische Entladung (ESD)

Unter elektrostatischer Entladung werden im Allgemeinen Spannungsdurchschläge in Folge hoher elektronischer Potentialunterschiede verstanden. Die Entladung kann durch Funken, Blitze erfolgen und ist somit als Brandoder Explosionsinitiator ein nicht zu unterschätzender Risikofaktor. Ein weiterer Faktor ist die irreversible Schädigung empfindlicher elektronsicher Bauelemente durch elektrostatische Entladung bei Kontakt.

Wie bereits erwähnt besteht die Ursache elektrostatischer Entladungen in einer hohen Potentialdifferenz. Dieser liegt eine vorherige elektrostatische Aufladung zu Grunde, welche oft durch simple Reibungselektrizität verursacht wird. Ein Beispiel für Reibungselektrizität liegt zum Beispiel beim Gehen über Teppichboden, Reiben einer Luftballonoberfläche oder Ausziehen bestimmter Pullover vor. Durch das Berühren eines geerdeten Körpers, kommt es je nach Stärke der erfolgten Aufladung zu spürbaren Entladungsreaktionen. Es sei an dieser Stelle jedoch erwähnt, dass die meisten elektrostatischen Entladungen zwar nicht wahrgenommen werden, aber dennoch ein hohes Gefahrenpotential für elektronische Geräte oder entflammbare Substanzen bergen können.

Um einer übermäßigen Potentialdifferenz entgegenzuwirken, bietet sich das Tragen von ESD zertifizierten Schuhen. Diese müssen nach der DIN EN 61340 einen elektrischen Durchgangswiderstand zwischen 0.75 M Ω und 35 M Ω besitzen und bieten somit die Möglichkeit elektrischer Ableitung über den Boden. In elektrostatischen Gefahrenbereichen ist der Einsatz von ESD-Sicherheitsschuhen durch die EN Norm 100 015 vorgeschrieben.

Da sich der Gesamtableitwiderstand jedoch aus des der Summe der Widerstände von Boden, Übergang Boden-Schuhe und Körper (eher kleine Widerstände) ermittelt, ist darauf zu achten, dass die Bodenbeschaffenheit (Sehr hohe Widerstände) die Schutzfunktion von ESD-Sicherheitsschuhen nicht aufhebt. Einflussreiche Faktoren bilden hier Schmutz, Feuchtigkeit oder Temperatur, welche erhebliche Auswirkungen auf den elektrischen Widerstand haben können.

